Primordial features, in particular oscillatory signals, imprinted in the primordial power spectrum of density perturbations represent a clear window of opportunity for detecting new physics at high-energy scales. Future spectroscopic and photometric measurements from the Euclid space mission will provide unique constraints on the primordial power spectrum, thanks to the redshift coverage and high-accuracy measurement of nonlinear scales, thus allowing us to investigate deviations from the standard power-law primordial power spectrum. We consider two models with primordial undamped oscillations superimposed on the matter power spectrum, one linearly spaced in k-space the other logarithmically spaced in k-space. We forecast uncertainties applying a Fisher matrix method to spectroscopic galaxy clustering, weak lensing, photometric galaxy clustering, cross correlation between photometric probes, spectroscopic galaxy clustering bispectrum, CMB temperature and E-mode polarization, temperature-polarization cross correlation, and CMB weak lensing. We also study a nonlinear density reconstruction method to retrieve the oscillatory signals in the primordial power spectrum. We find the following percentage relative errors in the feature amplitude with Euclid primary probes for the linear (logarithmic) feature model: 21% (22%) in the pessimistic settings and 18% (18%) in the optimistic settings at 68.3% confidence level (CL) using GCsp+WL+GCph+XC. Combining all the sources of information explored expected from Euclid in combination with future SO-like CMB experiment, we forecast Alin≃0.010±0.001 at 68.3% CL and Alog≃0.010±0.001 for GCsp(PS rec + BS)+WL+GCph+XC+SO-like both for the optimistic and pessimistic settings over the frequency range (1,102.1).
Reference: Euclid: The search for primordial features, M. Ballardini, Y. Akrami, F. Finelli, D. Karagiannis, B. Li, Y. Li, Z. Sakr, D. Sapone, A. Achúcarro, M. Baldi, N. Bartolo, G. Cañas-Herrera, S. Casas, R. Murgia, H. A. Winther, M. Viel, A. Andrews, J. Jasche, G. Lavaux, D. K. Hazra, D. Paoletti, J. Valiviita, A. Amara, S. Andreon, N. Auricchio, P. Battaglia, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, H. M. Courtois, A. Da Silva, H. Degaudenzi, F. Dubath, X. Dupac, M. Farina, S. Farrens, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot, K. Jahnke, S. Kermiche, A. Kiessling, M. Kunz, H. Kurki-Suonio, P. B. Lilje, V. Lindholm, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, N. Martinet, F. Marulli, R. Massey, E. Medinaceli, S. Mei, Y. Mellier, M. Meneghetti, E. Merlin, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, W. J. Percival, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, R. Saglia, B. Sartoris, T. Schrabback, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, L. Stanco, J. L. Starck, C. Surace, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, E. A. Valentijn, L. Valenziano, T. Vassallo, A. Veropalumbo, Y. Wang, J. Weller, G. Zamorani, J. Zoubian, V. Scottez (collapse list), uploaded on arXiv, arXiv:2309.17287